Q: In a triangle, side a = 5 cm, side b = 10 cm, angle B = 120°, find angle A.
Feedback: Not quite! Using the Sine Rule, $\frac{a}{\sin(A)} = \frac{b}{\sin(B)}$. Substituting the known values, $\frac{5}{\sin(A)} = \frac{10}{\sin(120^\circ)}$. Since $\sin(120^\circ) \approx 0.866$, we can rearrange the equation to get $\sin(A) = \frac{5 \times 0.866}{10} = 0.433$. Finally, using the inverse sine function, we find that angle $A \approx 25.8^\circ$.
Feedback: Well done! Using the Sine Rule, $\frac{a}{\sin(A)} = \frac{b}{\sin(B)}$. Substituting the known values, $\frac{5}{\sin(A)} = \frac{10}{\sin(120^\circ)}$. Since $\sin(120^\circ) \approx 0.866$, we can rearrange the equation to get $\sin(A) = \frac{5 \times 0.866}{10} = 0.433$. Finally, using the inverse sine function, we find that angle $A \approx 25.8^\circ$.